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Abstract

This short article highlights the unsolved problems of magnetic reconnection in
collisionless plasma. The advanced in-situ plasma measurements and simulations
enabled scientists to gain a novel understanding of magnetic reconnection. Still,

[ESIBIEEEion, on the_cross-scale and regional couplings. on the onset of magnetic
reconnection, and on the details of energetics. Future directions of the mag-

netic reconnection research in terms of new observations, new simulations and
interdisciplinary approaches are discussed.

Keywords: magnetic reconnection, Magnetospheric MultiScale, diffusion region,
onset, cross-scale, energetics

1 Introduction

Magnetic reconnection is a fundamental energy conversion process in plasmas. While
the changes in the topology of the magnetic field take place inside a small region,
regions of acceleration and heating of plasma are distributed at larger scales, driving
plasma transport or leading to explosive magnetic energy release on large scales such as
substorms, solar flares and gamma ray bursts. With the modern space technology the
Geospace is an ideal plasma laboratory to study the ground truth of how collisionless
magnetic reconnection operates in nature, since plasmas and fields in action can be
directly measured at high cadence. With the advanced in-situ measurement capabilities
onboard the four Magnetospheric MultiScale (MMS) spacecraft (Burch et al, 2016),
studies of magnetic reconnection and relevant plasma processes have been significantly
advanced by resolving the electron-scale physics. The rich studies conducted in the
new MMS era motivated us to summarize the up-to-date understanding of magnetic
reconnection from new observations mainly in Geospace but also in other environments
as well as from theoretical studies (Burch, 2024, this collection).

The studies based on in-situ observations from MMS and simulation confirmed the
theoretical predictions and led to a number of new discoveries within the active recon-
nection region under diverse plasma conditions (Genestreti, 2024, this collection). In
particular, progress is made in observations and theories related to the reconnection
rate and energy conversion process (Liu et al, 2024, this collection), the kinetic behav-
ior of both the electrons and ions in the vicinity of the diffusion region (Norgren, 2024,
this collection), which suggests complex 3D processes. The diverse roles of the waves
and turbulence in the magnetic reconnection are also among the important discoveries
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from the MMS observations(Graham, 2024, this collection; Stawarz, 2024, this collec-
tion). Some of these features have not been predicted or not been focused in theory
or numerical simulations before the MMS era.

MMS with other spacecraft and with empirical and/or theoretical modeling, it
allows us to gain new insights also on the macroscale consequence, including the large-
scale consequence of the solar-wind magnetospheric interaction (Fuselier et al, 2024,
this collection) and particle acceleration (Oka et al, 2023, this collection), as well as the
coupling among the magnetic reconnection related processes at different scales (Hwang
et al, 2023, this collection). All these studies took benefit from the new development
of the data analysis techniques (Hasegawa et al, 2024, this collection) and simula-
tion/modeling schemes (Shay, 2024, this collection), which allow direct comparison
between observed and simulated velocity distribution of particles and electromagnetic
signatures.

Recent observations throughout the entire solar system environment (Drake et al,
2024, this collection; Gershman et al, 2024, this collection) and advanced laboratory
experiments (Ji et al, 2023, this collection) enabled us to study different scales of
magnet reconnection in different parameter regimes and deepen our understanding of
the reconnection. New kinetic and fluid simulations have also significantly contributed
to understanding magnetic reconnection also for astrophysical plasmas both in the
collisionless and collisional regimes (Guo et al, 2024, this collection).

While significant advancement has been made with these endeavors, there are still

a number of unsolved questions_in _magnetic reconnection both in the kinetic physics
as well as macro-scale consequences at different environments, within and beyond

Geospace. In this short paper, we iEHIEHNSETOTINSONCANUESHONSIONAENEHE
th MMS

as well_as for the next decades.

2 Unsolved problems

2.1 Complex dynamics and structures_in the diffusion region

Substantial progress has been made in understanding the relation between magnetic
reconnection and kinetic plasma waves (e.g., Graham, 2024, this collection). These
include specification of the types and locations of the waves that can develop dur-
ing reconnection and identification of particle distributions that can excite the waves.
However, much less is known about the effects of these waves on plasma from obser-
vations and it is likewise difficult to determine how waves can affect reconnection.
In particular, an ongoing question is whether anomalous resistivity due to wave-
particle interactions contributes to magnetic reconnection, for example by modifying
the reconnection electric field (e.g., Yoo et al, 2024). MMS was able to directly quan-
tify anomalous resistivity associated with reconnection by resolving the changes in
electron distributions and moments associated with lower hybrid waves (Graham et al,
2022). The results showed that the contributions from anomalous resistivity were small
in consistent with previous theoretical and observational studies, although significant
cross-field diffusion can develop, which broadens narrow boundary layers and facili-
tates electron mixing. Further works can be done with MMS to answer the question on
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the role of waves in reconnection by examining also electron interaction with the higher
frequency waves. While the current direct investigation of the wave-particle interac-
tion using the highest resolution electron distributions is limited up to around the
lower hybrid frequency, the wave-particle correlator technique, which has been used to
compute the energy transfer between waves and particles for the whistler waves in the
magnetosheath (Kitamura et al, 2022), can be applied also for reconnection current
sheet to study higher frequency wave-particle interaction.

Furthermore MMS had made discoveries that had not been predicted by theory or
numerical simulations. MMS observations have shown that the agyrotropic electron
distributions found in the electron diffusion region can become unstable to large-
amplitude waves (Graham, 2024, this collection) such as the upper hybrid waves and
the electron Bernstein waves due to beam-plasma interactions. These waves provide
potential sources of radio emission and can modify the electron distributions in the
EDR, but the overall impact of these processes on the reconnection remains to be quan-
tified. These observations also clearly demonstrate the presence of physical processes
at scales below the electron gyroscale, i.e. down to Debye scale, inside the EDR. The
proper description of the EDR physics must include therefore Debye-scale processes,
which are not currently resolved in typical simulations (see Sec. 3.3).

MMS have also shown that some EDRs exhibit turbulent structures (Khotyaint-
sev et al, 2020) or strong oscillations Cozzani et al (2021) in and around EDR. The
oscillations were attributed to kinking of the current sheet by an electromagnetic drift
wave propagating in the out-of-plane direction, suggesting that reconnection needs to
be considered in three dimensions. Kinetic simulations have shown that EDRs can
become structured and turbulent when there is scale separation between the electron
Debye length and electron inertial length (Jara-Almonte et al, 2014). More gener-
ally, MMS observations have reported both turbulent and more laminar EDRs at the
magnetopause and in the magnetotail (Liu et al, 2024, this collection; Graham, 2024,
this collection). At present, it is not fully understood why some EDRs are laminar,
while others are more turbulent and structured. This raises the important question of
whether more complicated EDRs are being missed in observations. Although a large
number of EDRs have been identified by MMS, their identification has generally relied
on predictions from kinetic simulations of laminar reconnection. Further works are
needed to identify more complex EDRs. Methods such as tunable algorithms (e.g.,
Bergstedt et al, 2020) or machine-learning techniques (e.g., Bergstedt and Ji, 2024)
can be applied in identifying relevant magnetic structures from observational data.
Statistical studies can then be performed in addition to case studies, that is domi-
nated in the research thus far, leading toward a more comprehensive understanding
of the complex EDR dynamics.

At present guide-field reconnection is not as well understood as anti-parallel recon-
nection. In particular, in the strong guide-field case electrons tend to remain strongly
magnetized in the EDR. Thus, there is a reduced role of the off-diagonal pressure
terms in supporting the reconnection electric field and reduced agyrotropy, which is
often used to identify EDRs. Kinetic simulations demonstrate the formation of a nar-
row sublayer (of intensified current density) embedded within the broader EDR region
on the electron inertial scale (Liu et al, 2014). The off-diagonal pressure term only



becomes significant within this sublayer that is on the electron gyro-scale. Addition-
ally, a strong guide field results in the out-of-plane field-aligned electron flow around
the X line. This results in electrostatic waves and turbulence developing in the EDR.
The reduced role of agyrotropy and the role of electrostatic turbulence in guide-field
reconnection requires further investigation. Interestingly, the same out-of-plane elec-
tron flow from magnetic reconnection in the strong guide field limit may explain some
features of electron precipitation for discrete aurora (Huang et al, 2022).

2.2 Cross-scale dynamics and regional coupling

Magnetic reconnection operates under the presence of a diffusion region with dissipa-
tive electric fields which are generated in the electron diffusion region (EDR). Electron
physics prevails in the EDR, while Hall physics becomes significant in the ion diffu-
sion region (IDR). The influence of the magnetic reconnection further extends to the
macroscopic systems, such as the magnetospheric boundaries and meso-scale plasma
structures in Geospace, for which ideal magnetohydrodynamics (MHD) works well for
its overall description. Since these discrete reconnection regions around the X-line are
interconnected via the exchange and transport of particles, momentum, and energy,
with the macro-scale system, reconnection intrinsically possesses a multi-scale and
cross-scale nature. In-situ observations in Geospace and state-of-the-art numerical sim-
ulations have significantly advanced our understanding of the multi-scale aspects of
reconnection (Hwang et al, 2023, this collection) taking place throughout the Geospace
as highlighted in Fig. 1. They also revealed new questions that could potentially change
the current understanding and lead to a paradigm shift.

2.2.1 Electron-only to ion-coupled reconnection

The MMS data-model analyses have provided that reconnection is ubiquitous in the
shock transition region, the foreshock, and the magnetosheath downstream of both
quasi-parallel and quasi-perpendicular shock (Fig. 1b). Of particular interest in this
region is the newly discovered electron-only-reconnection from observations (Phan
et al, 2018) stimulating new theoretical studies (Liu et al, 2024, this collection) and
new investigations on interplay between turbulence and reconnection Stawarz (2024,
this collection). In turbulent systems an electron-only reconnection is considered to
occur mainly because the scale of the turbulent fluctuations limits the maximum size
of the X-line in particular along L (the main magnetic field direction in the current
sheet). Alternatively, it has been also suggested that the electron-only reconnection
might represent the early stage of regular reconnection before the X-line becomes large
enough to involve ions. Such finite lifetime effects may be relevant also for magnetotail
reconnection. Yet, confirming such a scenario is challenging. It is uncertain whether the
transition from electron-only reconnection to ion-coupled reconnection is regulated by
the reduction of the reconnection rate, since the rate of the electron-only reconnection
was obtained to be similar to (or even higher than) the regular reconnection rate
(Sharma Pyakurel et al, 2019). Further investigation and observation are needed to
gain a complete understanding of the electron-only reconnection and its role in cross-
scale reconnection dynamics and possible scale-dependent energy conversion.
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Fig. 1 Reconnection in Geospace. Beyond the global dayside and nightside magnetic recon-
nection, recent in-situ measurements and simulation identified the 3D complex more localized
reconnection features throughout the Geospace. (a-f) Examples of different types of reconnection
that are actively studied in the MMS era. (g) the 3D view of the magnetosphere from a MHD model
(Credit: V. G. Merkin) adapted from Sitnov et al (2016), where several key mesoscale processes KHI,
BBF/DF and FTE related to localized reconnections are indicated. The highlighed reconnection fea-
tures are: (a) secondary and/or multiple reconnection at the magnetopause (adapted from Qieroset
et al (2016), (b) turbulent reconnection in the shock transition region (adapted from Bessho et al
(2022)), (c-d) 3D multi-scale KHI/KHYV induced reconnection (adapted from Nakamura et al (2011)
and Faganello et al (2012)), and (e) structured and disturbed EDR in the magnetotail current sheet
(adapted from Cozzani et al (2021)) and (f) transient and localized reconnection at the dipolarization
front (adapted from Hosner et al (2024))

2.2.2 Velocity shear driven asymmetric reconnection

Asymmetry in density, velocity shear and magnetic shear are important conditions
for different magnetic reconnection regimes (Genestreti, 2024, this collection). Com-
bined effects of these local asymmetries are prominent at the flank-side magnetopause,
where complex multi-scale evolution of the magnetic reconnection current sheet can
take place associated with flow shear in the flank-side magnetopause developing also
to turbulent layer depending on the different ambient conditions (Hwang et al, 2023,
this collection; Stawarz, 2024, this collection). When the interplanetary field (IMF)
is northward, the low-latitude magnetopause is stable to reconnection but subject to
large-scale Kelvin-Helmholtz instability (KHI) driven by shear flows. Under super-
Alfvénic conditions the vortex flow produced by the non-linear growth of the KHI
can locally compress the magnetic shear layer (current sheet), forcing the onset of a
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vortex-induced reconnection (VIR) (Nakamura et al, 2017) as shown in Fig. 1¢ and can
further develop into a complex turbulent boundary layer. When the IMF is southward,
meaning a strong magnetic shear at the magnetopause favorable for reconnection, the
evolution of the current sheet varies depending on the initial condition (magnetic shear
vs. flow shear). However, the two modes can interact with each other, leading to com-
plex and intercorrelated dynamics. Understanding the interplay between reconnection
and KHI (and/or Rayleigh-Taylor instability associated with density asymmetry) is
important as it would control solar wind transport and energy conversion across the
flankside magnetopause. Furthermore, reconnection can also occur out of the flow
shear plane due to a 3-D twist of magnetospheric and magnetosheath magnetic fields
induced by Kelvin-Helmholtz vortices as shown in Fig. 1d. which is called “mid-latitude
reconnection” (MIR). MIR occurs several Earth radii apart from the low-latitude VIR
location, while being magnetically connected in 3D. Hence, the potential “commu-
nication” between the two reconnection sites can affect the solar wind transport in
a complex way. Hence the magnetic reconnection at flank-magnetopause provide an
excellent laboratory for studying multi-scale (forced) 3-D reconnection.

2.2.3 Extent and orientation of X-lines; primary and secondary
X-lines

While the magnetic reconnection at the magnetopause and magnetotail are considered
as the driver of the global magnetosphere circulation, observed magnetic reconnection
in these large scale current sheets suggests variability in space and time and signatures
of multiple reconnection (Fuselier et al, 2024, this collection; Hwang et al, 2023, this
collection). One of the difficulties in interpreting in-situ reconnection events arises from
the lack of information about the large-scale context of reconnection topology from
observations with limited coverage. A number of unsolved questions on the temporal
and spatial scales of the reconnection are therefore remained in mesoscale and large-
scale context for both the magnetopause and the magnetotail.

At magnetopause the location and extent of the primary X-line is considered to be
mainly determined by the global solar wind - magnetosphere interaction enabling us to
predict by the maximum shear model (Hasegawa et al, 2024, this collection), which is
an empirical model using upstream conditions or global parameters. Yet, observations
suggest transient and localized features of magnetopause reconnection, or existence
and important dynamics of the multiple reconnection (Fig. la). Some simulations
suggest that the local physics can influence the orientation and variation of the X-line
(e.g. Liu et al. 2018). Relationships between the primary and secondary X-lines are
vet an unsolved problem. Are the secondary reconnection generated after the primary
X-line formed by turbulence or external (e.g., magnetosheath) conditions, or a result
of the departure of the X-line orientation due to local physics? The evolutionary path
of plasmoids and flux ropes commonly generated on the dayside magnetopause via
secondary/multiple X-lines are also yet to be understood.

Although the background configuration of the magnetotail current sheet is typ-
ically 2-D and symmetric, so that the formation of a large-scale extended X-line is
expected, one of the major challenges with observations is determining the extent
of the reconnection region in the out-of-plane direction as reviewed in Hwang et al
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(2023, this collection). The complex structured EDR have been identified (Fig. le)
as discussed also in Sec. 2.1) suggesting finite extent of the X-line. While the dawn-
dusk extends of bursty bulk flow (BBF)s and localized dipolarization fronts (DF) and
associated localized thin current sheets suggest a finite dimension of the source, i.e.
magnetic reconnection region, these features can only be considered as indirect evi-
dence. This is because they could be structured also by the ballooning/interchange
instability developed when a wider flow penetrates into the inner magnetosphere or
the structured flows/DFs are created by the interchange instability itself. Further-
more, transient localized reconnection can take place also at DF (Fig. 1f) so that DF
is modified as it propagates Earthward from the source region. Yet, it is crucial to
understand the extent of the reconnection region as it affects the large-scale dynam-
ics, i.e. magnetic flux and mass transport, as well as, particle acceleration process.
The data mining tool will give us some clue on the extension of the X-line (Stephens
et al, 2023). Furthermore, the larger spacecraft separations along the MMS spacecraft
orbit planned in 2024 are potentially enabling new studies of reconnection X-line in
the out-of-plane direction in Earth’s magnetotail.

2.3 Omnset of reconnection

While the free energy of reconnection is determined by large-scale current sheet pro-
cesses and its consequences affect the large-area in space, the dissipation of a tearing
mode occurs at scales of the ion or electron gyroradius. Hence the onset problem is also
naturally a multi-scale problem and so far less explored area in reconnection physics.
The limitation in the current observation capabilities covering all the necessary scales
makes it very difficult to compare with theoretical/numerical descriptions. Here we
highlight the onset problems of different types of current sheets including magnetotail,
solar flare, magnetopause and other transient current sheets.

2.3.1 Reconnection onset in Earth’s magnetotail

For the onset problem of the near-Earth magnetotail reconnection one needs to under-
stand both the buildup of the thin current sheet and explosive energy release. The
observed thin current sheets are generally embedded in a thicker plasma sheet with
anisotropy and agytropy both in ions and electrons and contain radial or azimuthal
gradients (Runov et al, 2021, and references therein). Detection of formation and evo-
lution of thin current sheet from in-situ observation is still limited due to the sparse
dataset. The current best approach to obtain large-scale current sheet structure is
data-mining method (Sitnov et al, 2019b), which succeeded to predict the location of
the X-line (Stephens et al, 2023) where the EDR/IDR were observed by MMS.

MHD models suggested that thin current sheets are created due to deformation of
the high-latitude magnetopause boundary by the reconnected and transported mag-
netic flux from the dayside (Birn and Schindler, 2002) or due to depletion of the closed
magnetic flux at the near-Earth current sheet transported toward dayside (Hsieh and
Otto, 2014). While the basic concept of the former effect obtained in the isotropic
plasma description of MHD models was verified by the 2D PIC simulation (Hesse and
Schindler, 2001), modeling of the onset current sheet with very small, but still finite


songyongliang


songyongliang



Bz (normal component to the current sheet), where anisotropy and agytropic pressure
contribution plays a role, is still challenging in particular to match the observations.
The mechanism leading to the onset of magnetotail reconnection with finite Bz has
been extensively studied by simulations, which revealed two primary onset mechanisms
(Sitnov et al, 2019a, and references therein). The first is the electron tearing instabil-
ity preceded by an external driving of the current sheet as described above to form an
electron scale current sheet (e.g. Hesse and Schindler, 2001; Liu et al, 2014) and the
second is a magnetic flux release instability in an ion-scale current sheet with a Bz
hump (Sitnov and Schindler, 2010). The latter may involve both ideal-MHD regimes
and the ion tearing instability. Yet, both ion and electron tearing simulations show
that the new X-lines form just ~15 di (<2Re) from the left boundary of the simulation
box, far closer to Earth than almost all observations of tail reconnection. Recently a
new class of current sheets have been explored (Sitnov and Arnold, 2022) that utilize
weak anisotropy to extend current sheets much further than corresponding Harris-like
current sheets. The new “overstretched ion-scale current sheets” are agyrotropic and
are supported by the off-diagonal pressure originating from Speiser ions (Arnold and
Sitnov, 2023). Yet, comprehensive stability theory for these new current sheets have
yet to be developed and simulations of reconnection onset are still an active area of
research.

Using in-situ observations to detect the reconnection onset is another challenge.
Recent PIC simulation suggested possible observable onset features is the slightly
agytropic electron distribution (Spinnangr et al, 2022). But so far there is no MMS
observations within less than 10 ion gyro time from onset in the vicinity of EDR exist
to confirm such prediction. Nonetheless several MMS electron observations are inter-
preted to be precursor of the larger scale reconnection onset based on prediction from
the simulation. These include: observation of thin electron scale current sheet with slow
electron flows (Wang et al, 2018); Divergent electron velocity flow observation without
magnetic topology change (Motoba et al, 2022); Observation of electron-scale islands
in the vicinity (or as a consequence of the formation) of a major X line (Genestreti et al,
2023). Yet all these observations are snapshots of some stage of reconnection evolu-
tion predicted by some simulations. Multi-scale observations, which monitors both the
ion- and electron-scale evolution of the current sheet simultaneously, are essential for
confirmation of the different onset mechanism of fast reconnection in the magnetotail
current sheet.

2.3.2 Reconnection onset in solar flares

The mechanisms of the flare onset and associated particle accelerations are also a
research area with outstanding questions (Drake et al, 2024, this collection). Similar to
the magnetotail reconnection, how the magnetic energy is build up and how its sudden
release is triggered need to be explained to understand the flare onset. The large-scale
accumulation of energy preceding the reconnection onset and its transport down to
kinetic length scales are important for solar flares in coronal loops, and hence it is a
multi-scale problem. While the kinetic scales are inaccessible from observations, com-
plex 3D evolution of the flare has been extensively studied based on multi-wavelength
observations as well as from the in-situ measurements of the remote observation of
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accelerated particles. Theories for magnetic reconnection onset in the flares, such as
the breakout (Antiochos et al, 1999) and tether-cutting (Jiang et al, 2021), have been
successful in producing the standard eruptive morphology such as a twisted CME flux
rope escaping at high speed and fast reconnection in the flare current sheet below the
flux rope. Kink instability of the flux ropes in the solar corona (T6rék and Kliem,
2005), on the other hand, has been also suggested to be important for the flare onset
reproducing the above eruption. Yet, it is not established definitively from observations
as well as simulations whether Alfvénic motions cause the onset and drive reconnection
or vice versa (Drake et al, 2024, this collection). Furthermore, the observed precursor
local activities such as the preflare-heating and its role in the subsequent eruption are
further to be understood (e.g. Battaglia et al, 2019; Hudson et al, 2021).

In contrast to the near 2D geometry magnetotail current sheet, the guide field
plays a crucial role in the evolution of the reconnection current sheet in solar flare
cases. In the presence of a strong guide field, the thermal pressure of the current
sheet can play only a minor role in the force balance, since the guide field contributes
to magnetic pressure at the center of the reversal and mitigates the collapse of the
converging fields (Leake et al, 2020; Dahlin et al, 2022). It is also possible for a current
sheet with small finite guide field to evolve toward a ”mixed” equilibrium, where the
current sheet relaxation process leads to local guide field amplification (Yoon et al,
2023). The amplification of the guide field enhances the previously negligible magnetic
pressure, and creates a condition where both the thermal pressure and the magnetic
pressure play a significant role stabilizing the current sheet (Yoon et al, 2023). A
similar guide field amplification process has been seen in 3D MHD simulations that
demonstrate a local accumulation of magnetic shear followed by outward expansion to
form a thin current sheet right before the onset of a solar flare, after which the strong
guide field quickly decreases by more than an order of magnitude (Dahlin et al, 2022).
Strong magnetic shear has also been associated with larger and more rapid increases
in ion kinetic and thermal energy after reconnection onset in the corona, making it a
potential candidate to explain the switch-on nature of solar flares (Leake et al, 2020).
What role do other instabilities such as kink instability versus reconnection play in
the flare onset is still an open question (Drake et al, 2024, this collection).

The dynamics of reconnection in the flare current sheet will span an enormous range
of scales in a much complex geometry than the magnetotail. In a collisional plasma
with high Lundquist numbers (~ 10%) such as the solar corona the Sweet-Parker
current layers are highly unstable to the plasmoid instability (Shibata and Tanuma,
2001; Loureiro et al, 2007; Bhattacharjee et al, 2009) well before they can reach kinetic
scales so that the current sheet breakups has been successfully simulated with fluid
models that are supporting observations (Daldorff et al, 2022). In thin current sheets
layers that form between flux-ropes, on the other hand, the super-Dreicer fields induce
a transition to kinetic reconnection (Stanier et al, 2019), which cannot be detected
from observations. How do the dynamics of reconnection current layers at kinetic scales
couple to energy release at the macroscale is still an open question (Drake et al, 2024,
this collection).

10



2.3.3 Reconnection onset in different forced current sheets

Magnetopause reconnection: Due the continuous solar wind driver, the reconnec-
tion onset problem at the magnetopause is less related to “when?” but is more about
“where” and ”what conditions”. Important factors are the asymmetry in the density
across the current sheet and the magnetic and flow shear between the two sides of
the magnetopause current sheet as reviewed in Hwang et al (2023, this collection) and
Fuselier et al (2024, this collection) for Earth case and in Gershman et al (2024, this
collection) for planetary magnetosphere as well as heliopause. The diamagnetic drift
stabilization (Swisdak et al, 2010) or the shear flow-based suppression (Cassak, 2011)
provide a sufficient, but not necessary condition for determining where reconnection
cannot happen. The suppression conditions has been successfully tested at Earth and
planetary magnetospheres. Yet since the Earth’s magnetopause does not fulfill dia-
magnetic drift stabilization condition, the mechanism of determining the location of
the magnetopause reconnection as well as the multiple and transient nature of the
magnetopause reconnection is not fully understood (see also Sec. 2.2).

Transient forced current sheets: There are a number of evidence found that
local/transient thin current sheets form as a consequence of reconnection (or non-
reconnection) related flows or field disturbances (Hwang et al, 2023, this collection;
Stawarz, 2024, this collection) as discussed in Sec. 2.2 and highlighted in Fig. 1. Unlike
the large-scale magnetopause or magnetotail current sheets, these current sheets can
be localized and/or transient and formed by dynamic processes. These include flow
shear (Kelvin-Helmholtz instability) driven reconnection at the flank magnetopause
(Nakamura et al, 2017), the shock-and turbulent driven reconnection in the magne-
tosheath or foreshock region (Bessho et al, 2022) . Furthermore, the reconnection jet
itself can be also a driver of the secondary reconnection due to colliding reconnection
jet in a multi-point reconnection site (Qieroset et al, 2016). In the near-Earth magne-
totail transition region, reconnection event was found when flux rope was interacting
with dipole field (Poh et al, 2019), or at dipolarization front in the flow braking region
(Marshall et al, 2020; Hosner et al, 2024). These types of reconnection are usually
forced by some primary processes and the important questions are also how these
primary processes create such current sheets and how these reconnection then affect
the overall system. For example, important open questions for turbulence generated
reconnection would be: how and how often reconnection can be generated and how
such current sheet is influenced by the fluctuation characteristics, and what impact
the reconnection has on the turbulence dissipation and nonlinear interactions. Explor-
ing different regions in space with dedicated in-situ measurements may lead to further
discovery of different types of thin current sheets throughout the solar system.

2.4 Enmnergetics, acceleration, and heating

The energy explosively released through magnetic reconnection goes into plasma bulk
flows, heating, and nonthermal particle acceleration in systems ranging from electron-
scale current sheets in turbulence to the magnetospheres of accreting black holes. The
nature and controlling factors of energetics in the vast array of reconnection systems
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are among the most compelling questions in reconnection research. Recent develop-
ment in laboratory (Ji et al, 2023, this collection), Geospace (Oka et al, 2023, this
collection), solar (Drake et al, 2024, this collection) and astrophysics (Guo et al, 2024,
this collection) investigations present an unprecedented opportunity to establish a
common framework on energetics across different systems. Below we list long-standing
open question, and in particular, highlight how the released magnetic energy dis-
tributes between thermal and nonthermal components and between electrons and ions
in the realms of magnetotail observations, solar flares, astrophysical systems, and
laboratory experiments.

2.4.1 Magnetotail observations

In-situ observations in the magnetotail enable the study particle acceleration at vari-
ous regions related to reconnection; e.g., diffusion region, separatrix, magnetic islands
or flux ropes, outflow and dipolarization front (Oka et al, 2023, this collection). Dis-
tinct power law spectra for both electrons and protons are reported associated with
reconnection. A puzzle is that nonthermal population is observed during quiet plasma
sheet. Also, when electrons are significantly heated the nonthermal tail does not always
become harder (Oka et al, 2022). This is counter-intuitive because the nonthermal tail
is expected to be enhanced as the temperature increases. For ions, there are less studies
on the energy partition between thermal and nonthermal components. A recent study
suggests that ion energization is dominated by the electric field fluctuations near the
ion cyclotron frequency (Ergun et al, 2020). How energies are partitioned between ions
and electrons is also an important unsolved problem. When ion and electron energy
flux were compared in ion diffusion region of magnetotail reconnection, it was domi-
nated by ion enthalpy, with smaller contributions from the electron enthalpy and heat
flux and the ion kinetic energy flux (Eastwood et al, 2013).

One of the important factors to understand the energetics in magnetic reconnetion
is the role of the turbulence in the acceleration, which was identified in the low-beta
magnetotail reconnection events both for ions and electrons (Ergun et al, 2020). While
the formation of the nonthermal tail distribution is generally considered based on
guiding-center approximation, it remains an open question how particles interact with
turbulence/waves and how they receive energization “kicks” from fluctuations which is
inherently non-adiabatic interaction. It is also interesting to know how turbulence reg-
ulates the repartitioning of energy released by reconnection as a function of distance
from the x-line, since energy may be transfered from the bulk outflow into the particle
thermal energy or energetic particles over some distance. Another factor affecting the
energization processes in the magnetotail reconnection is the finite extent of the recon-
nection regions and its multiplicity as discussed in Sec. 2.2. Electrons and low-energy
ions, have gyroradii smaller than the typical size of the reconnection outflows and can
be confined within the reconnection region. However, the heavier or energetic ions,
can have the gyroradius comparable to the transverse scale of the reconnection out-
flow, and thus can no longer be trapped within the outflow and their acceleration may
stop. For such ions to gain further increase in the energy, they need to interact with
multiple reconnection events. Yet, such structures and evolution of multiple reconnec-
tion in the magnetotail is difficult to identify from the observations. A further caveat
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that has to be also considered in the magnetotail events is that the particle distribu-
tion observed from a spacecraft prior to an event is generally not (or not identical to)
the source of the population observed afterward. For understanding the energetics of
reconnection in the magnetotail, simultaneous coverage of the acceleration regions in
larger context, i.e. from X-line to the outflow regions are essential.

2.4.2 Solar flares

Macro-scale energy release of magnetic reconnection have been extensively observed
with remote-sensing of solar fares as well as from recent in-situ measurements in the
near-sun solar wind related to the interchange reconnection within the coronal holes
or the reconnection in the heliospheric current sheet as reviewed by Drake et al (2024,
this collection). It is the solar flare observations that first suggested that the released
magnetic energy in reconnection is partitioned into nonthermal and thermal electrons
and ions. In contrast to the magnetotail reconnection, spectrum data suggest contri-
bution of nonthermal electrons to be comparable or exceeding the thermal electrons.
Significant ion energy gain are detected in the emission, although the observed emis-
sion is limited in energy range. Combining with in-situ observations of flare ejecta by
Parker Solar Probe and Solar Orbiter is expected to improve our understanding of the
ion energetics.

Modeling efforts has significantly contributed to advance our understanding of the
macro-scale particle acceleration mechanisms related to reconnection as summarized
in Drake et al (2024, this collection). Different models integrating MHD with particle
descriptions have shown effectiveness in producing observed power law spectra (Arnold
et al, 2021; Li et al, 2022). These models, as they cover kinetic to large-scale MHD
regimes, make it possible to compare and predict imaging spectroscopy observations
of solar flares and the highest energy particle acceleration in astrophysical objects.
In order to make progress in understanding the energetics in the reconnection in the
solar flare, comparisons of observations with the predictions from these models, for
instance, on the role of guide field or location of the acceleration sites, are essential.

2.4.3 Astrophyical systems

In astroyphysical system, magnetic reconnection has been proposed as a mechanism to
explain high-energy phenomena and radiation signatures such as pulsar wind nebulae,
pulsar magnetosphere, relativistic jets, gamma-ray burst, accretion disks, and magne-
tars, etc (Uzdensky, 2011; Hoshino and Lyubarsky, 2012; Arons, 2012; Guo et al, 2020).
They can take place in relativistic magnetically dominated regions in these systems.
High-energy emissions are observed during reconnection as particle heating and accel-
eration happens, which are one of the key issues in the reconnection studies discussed
in the review by Guo et al (2024, this collection). The relativistic reconnection events
trigger acceleration in a various regime where power-law tail slope can become near
unity (Sironi and Spitkovsky, 2014; Guo et al, 2014; Werner et al, 2016; Li et al, 2023).
The direct acceleration due to reconnection electric field can also lead to power-law
spectra (Zenitani and Hoshino, 2001) in addition to the more common Fermi/beta-
tron processes among the different system (Guo et al, 2015, 2019). Yet, the overall
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framework of the energy partition problem are similar to other systems and treat-
ing simultaneously the large-scale fluid behaviour and the basic particle acceleration
process is a challenging problem as in other systems, considering the enormous ratio
between the system size and the plasma inertial length. Different theories have success-
fully explained magnetic reconnection as a source of nonthermal particles. However,
many remaining questions (e.g., how much energy goes to thermal and nonthermal)
to be understood are similar to space plasma, but in much larger spatial and temporal
scales, including those observed surrounding black holes in the event horizon telescope.

2.4.4 Laboratory reconnection energetics

With the advantage of being able to systematically quantify reconnection energetics,
laboratory experiments have made substantial progress on the topic (Ji et al, 2023,
this collection), in coordination with numerical simulations and space observation.
As the magnetic energy is converted into flows, thermal and nonthermal energization
takes place at the X line, separatrices, exhausts, and far downstream. Consistent with
space observation and fully kinetic simulations, the ion energy gain was found to
exceed that of the electrons in laboratory reconnetion (Yamada et al, 2018). Recent
experiments detected directly accelerated electron by the reconnection electric field
and nonthermal electrons in anti-parallel reconnection in low-beta plasmas (Chien
et al, 2023), further bringing the possibility of sharing common studies with the space
community. The range of system size achievable in laboratory experiments is so far
within 10 ion-inertial lengths from the X line, and hence the aspects on dynamics
and energy conversion at global scales are open challenges. The effects from plasma
collisions need to be carefully handled for comparative studies with space plasma.
Future experiments in new facilities such as FLARE (Ji et al, 2022) will access both
the collisional and collisionless regimes, promising fruitful comparisons with magnetic
reconnection in space and astrophysical systems.

3 Future research

Outstanding questions reviewed in the previous section motivate us to advance the cur-
rent observation and computing capabilities, thinking beyond the existing framework.
Here we discuss new research aspects that can carry us farther into understanding of
magnetic reconnection in nature.

3.1 Interdisciplinary studies

The recent development of astrophysical magnetic reconnection has strong connection
with reconnection in space, solar and laboratory environments and can be extended
more in future. The development of collisionless magnetic reconnection and kinetic
simulations, starting from 1990s, laid the solid ground for studying relativistic mag-
netic reconnection in astrophysics community. It has became a common knowledge
that kinetic physics supports fast magnetic reconnection and magnetic reconnection
likely leads to plasma heating and particle acceleration (Birn et al, 2012, and refer-
ences therein). Meanwhile, the development of relativistic magnetic reconnection led
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to new knowledge and motivations on reconnection physics and particle acceleration
mechanisms applicable to non-relativistic regime. For example, recent progress of the-
ories of reconnection rate was initiated by studies of relativistic magnetic reconnection
(Liu et al, 2017). The development of nonthermal power-law acceleration in relativis-
tic magnetic reconnection cleared out the doubt on whether the particle spectrum
form the formation of power-law in non-relativistic studies (Guo et al, 2024, this col-
lection). Motivated by these, particle power-law distributions are recently achieved in
non-relativistic studies (Arnold et al, 2021; Li et al, 2019; Zhang et al, 2021, 2024).
Such connection and communication between different communities should continue
and discussions should be strongly encouraged.

Through the common framework of theory and simulations, processes occurring
in solar and astrophysical systems mainly captured with large-scale remote-sensing
images can be bridged to those in space and laboratory environments where plasma are
“directly” measured. The understanding and knowledge gained from in-situ kinetic-
scale measurements in Geospace and laboratory can be applied to other planetary
environments and serve as a foundation to understand larger scale systems such as solar
flares and astrophysical phenomena, for example, relativistic jets in quasars. Direct
comparison of the energy spectra between the solar flare and magnetotail reconnection
has proven to be a successful scheme for studying particle acceleration in magnetic
reconnection (Oka et al, 2023; Drake et al, 2024, this collection). The efficiency of the
reconnection in the solar wind - planetary interaction using the common frame work
throughout the solar system (Fuselier et al, 2024, this collection; Gershman et al, 2024,
this collection) can serve as a reference to other stellar systems. The 3D dynamics and
evolution of reconnection current sheet detected from in-situ measurements (Hwang
et al, 2023, this collection) as well as in the controlled laboratory settings (Ji et al,
2023, this collection) can benefit from the knowledge of larger scale context gained
from solar flare studies (Drake et al, 2024, this collection) and vice versa. That is, for
identifying the energy conversion site and its dynamics in the solar context one can
take into accout knowledge from in-situ observations by MMS (Genestreti, 2024, this
collection; Liu et al, 2024, this collection; Norgren, 2024, this collection; Graham, 2024,
this collection; Stawarz, 2024, this collection). Communications between communities
of different skill sets are essential.

3.2 Multi-scale observations

As outlined in Section 2.2, cross-scale dynamics and regional coupling remains as a
challenging, unsolved problem. While ion-scale and electron-scale physics have been
studied by multi-spacecraft missions such as Cluster and MMS, respectively, and
THEMIS enabled also larger scale evolution, it is necessary to have a larger number of
spacecraft over a wide range of scales. In this regard, various future mission concepts
has been proposed such as Plasma Observatory (Retino et al, 2022) to cover simulta-
neously the ion and fluid scale at different magnetosphere boundaries, and multipoint
observations with sufficient energy range to study Earth magnetotail reconnection
including the larger context, such as MagneToRE (Maruca et al, 2021), MagCon
(Kepko et al, 2023) and WEDGE (Turner et al, 2023).
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It would also be interesting to study far downtail because magnetic reconnection
signatures have been identified in the distant tail (] X| ~ 100-200 Rg). While a future
multi-spacecraft mission HelioSwarm (Klein et al, 2023) for studying mainly solar
wind turbulence also crosses downtail to X ~ -60 Rg, it is important to push further
downtail beyond this distance. Such an extension would allow us to study more large
scale reconnection signatures, including chains of plasmoids and enable some compar-
ison with solar flares. Note that the ion kinetic scale in the magnetotail is on the order
of 100-1000 km whereas it is only 1 m in the solar corona.

Improving solar flare observations is also crucial for facilitating interdisciplinary
and comparative studies. In the next few years, Solar-C (Shimizu et al, 2020) and
MUSE (Cheung et al, 2022) missions will be launched. These missions will study
reconnection-related phenomena by conducting spectroscopic observations in EUV
wavelength with a wide and seamless temperature coverage (1-1000 eV) and with high
temporal and spatial resolutions. However, in order to understand the energetics and
fast-varying plasma processes such as shocks and reconnection, it is also important
to conduct imaging-spectroscopy using X-rays (e.g. Oka et al, 2023; Glesener et al,
2023). Unlike EUV emissions that can be delayed due to ionization and recombination
processes (e.g. Imada et al, 2011; Shen et al, 2013), X-ray continua are produced
via Bremsstrahlung emission without any delay. Recent advancements in the photon-
counting technique and improved focusing optics are likely to cover large dynamic
range at high temporal and spatial resolutions, and therefore a high-precision imaging-
spectroscopy of reconnection-related phenomena is expected to be realized. The energy
spectrum would be obtained seamlessly from thermal to nonthermal energy ranges,
which is a crucial step toward a better comparative study between solar and space
plasmas. Currently, mission concepts such as PhoENiX (Narukage et al, 2020) and
FIERCE (Shih et al, 2023) are being developed to achieve such imaging spectroscopy
using X-rays.

3.3 Future modeling

Nowadays, modeling of magnetic reconnection largely relies on numerical simulations
as presented in Shay (2024, this collection). In particle-in-cell (PIC) simulations arti-
ficial parameters are often used such as the mass ratio (m;/m.) and the ratio of the
plasma frequency to the electron cyclotron frequency (wpe/wee) to reduce the compu-
tational cost. At this point, there is no consensus on how realistic these parameters
should be to give physically meaningful results. Yet, these parameters need to be cho-
sen carefully since the artificial mass ratio controls the separation between ion-scale
and electron-scale physics and modifies plasma wave properties. Interestingly, it was
reported that Debye-scale turbulence alters the electron-scale dynamics (Jara-Almonte
et al, 2014) when a realistic frequency-ratio parameter is used.

A major unsolved area of research is the interaction of magnetic reconnection with
both mesoscale and global scale dynamics. By “mesoscale,” we mean length scales
much larger than the ion diffusion region but still smaller than global magnetospheric
scales. Examples of such multiscale interactions are the generation and dynamics of
bursty bulk flows in the magnetotail as well as the reconnection and turbulence inter-
action in both the magnetosheath and upstream of the Earth’s bow shock. A major
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issue with studying these multiscale interactions is that PIC simulations are too com-
putationally expensive to include meso and global scales. To capture the multi-scale
nature of magnetic reconnection and its interaction with larger, global scale dynam-
ics, several novel numerical schemes are being developed. For instance, interlocking
PIC and MHD models (Daldorff et al, 2014; Téth et al, 2016) have been developed
by several research groups. In addition, a new hybrid simulation model kglocal, that
couples particle gyrokinetics within MHD simulations for particle acceleration study,
was recently proposed, as detailed in Shay (2024, this collection).

Several new directions are emerging, both in software and in hardware. Due to
strong requirements of the electric power, recent supercomputers have begun to use
“accelerators” including graphic processing units (GPUs). Since the programming
model is different, it is often necessary to develop GPU variants of simulation codes.
Yet, a growing number of simulation codes have been recently developed for GPUs,
by overcoming the issue of yet-to-be-improved software development environment.
Another new directions are machine learning (ML) or artificial intelligence (AI) tech-
nologies (Camporeale et al, 2024). ML/AT is useful not only for post-processing the
simulation data, but also for predicting solutions for our physics problems (Raissi
et al, 2019; Karniadakis et al, 2021). Furtheremore, quantum computers could be a
game changer (Grumbling and Horowitz, 2019), although the timeline for creation of
practical hardware for simulations is still unknown. They may allow us to calculate
by far the larger number of variables than classical computers. Yet, since basic prin-
ciples and logic circuits are very different, development of algorithms for simulations
is required from scratch. In the next decade, when algorithms and hardware are fur-
ther progressed, it is expected to become more clear whether quantum computing is
promising for plasma simulations.

4 Conclusions

The recent advancement in the in-situ plasma measurements, which enabled to study
the collisionless magnetic reconnection physic including the kinetic physics, led new
discoveries as well as many open questions discussed in the previous sections. While
they mainly deal with examples from Geospace, many of these open questions are
applicable also to other systems including other planets, astrophysical system, and lab-
oratory. Yet, in-situ measurements are limited by a specific range of plasma parameters
(from location where spacecraft can fly) and a specific scales. Remote observations,
on the other hand, are usually covering large-scale context of magnetic reconnection
but for a limited energy range and limited resolution not covering micro-scale. Future
observational capabilities tackling the multi-scale problems of magnetic reconnection
are desired. In the MMS era the advancement of simulations also opened up a new
possibility of close comparison between the observation and simulations on different
scales. Applying these simulations that are ”validated” by comparing with in-situ
measurement, to other system in different parameter regimes using next-generation
computing techniques is expected to further advance our understanding the physics
of magnetic reconnection.
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